
Scripting in GIS Applications:
Experimental Standards-based Framework for Perl

AlexandreSorokine
RegionalScienceInstitute

4-13Kita-24 Nishi-2 Kita-ku
Sapporo001-0024Japan
Phone+81-11-717-6660
Fax+81-11-757-3610

sorokin@vtt.co.jp

Kurt Ackermann
RegionalScienceInstitute

4-13Kita-24Nishi-2 Kita-ku
Sapporo001-0024Japan
Phone+81-11-717-6660
Fax+81-11-757-3610

kurt@vtt.co.jp

ResearchSession

Abstract

Scriptinglanguageshavelong beenutilized by GIS ap-
plication developers to achieve higher levels of program-
ming and shorter developmenttimes. Modern general-
purposescripting languages– like Tcl/Tk, Perl or Python
– allow thesmoothintegration of varioussoftware compo-
nents,while at the sametime providing rich programming
capabilities. Increasesin processorspeedand the devel-
opmentof industry-widestandardsare removing obstacles
to theproliferation of universal scriptinglanguagesin GIS
applications.

This paper examinesthe feasibility, architecture and
early results of the building of a framework of object-
orientedmodulesfor Perl that is designedto provide uni-
form accessto various sourcesof spatial data from Perl
scripts. The framework is independentof any particular
GISapplicationandthusbasedontheobjectmodeldetailed
in theAbstract Specificationby TheOpenGISConsortium.
Theframework is intendedto beusedfor rapid application
development,gluing varioussoftware componentstogether
andprototyping.

1. Introduction

Scripting languageshave long sincebecomecommon-
place in programmingpractice. Today most commercial
softwarepackagesfeaturesomekind of scriptingcapabil-
ity andseveralgeneral-purposescriptinglanguages– such
asPerl,Python,Tcl/Tk andVisualBasic– areavailablefor
variousplatforms. Scriptinglanguagesareusuallyviewed
ascomplementaryto systemprogramminglanguageslike
C, C++ or Java.

Accordingto [9] scriptingandsystemprogramminglan-
guagesare fundamentallydifferent. The main role of
systemprogramminglanguagesis building datastructures
from scratchanddefiningoperationswith themonthelevel
of memorywords. The objective of scriptinglanguagesis
intrinsically differentandthey aremoreintendedfor con-
nectingvariouscomponentstogether, assumingthatexten-
sive frameworks of such componentsalreadyexist. The
transitiontowardsscriptinglanguagescanbeviewedasakin
to the transitionfrom assemblylanguagesto systempro-
gramminglanguages,which startedin the late 1950s. In-
deed,scriptinglanguagesdiffer from systemprogramming
languageswith respectto thesamecharacteristics(instruc-
tionsperstatementandtyping of variables)assystempro-
gramminglanguagesdiffer from assemblylanguages.In
termsof the numberof machine-codeinstructionsper lan-
guagestatement,scriptingrepresentsa higherlevel of pro-
grammingby bringing the numberof instructionsto the
100-1000rangecomparedto systemprogramming,which,
in turn, hadincreasedthenumberof instructionsperstate-
ment to 10 comparedto assemblylanguages.In termsof
typing, scriptinglanguageshave muchweaker typing than
systemprogramminglanguages,thus facilitating the glu-
ing of varioussoftwarecomponents.In this sensethey are
closerto assemblylanguages,whichalsohaveweaktyping
[9].

Oneof the major factorsbehindtheobservedprolifera-
tion of scriptinglanguagesis their ability to both increase
thespeedandreducethecostsof applicationdevelopment.
Both advantagescomeat theexpenseof applicationspeed,
however this is well compensatedfor by fasterprocessors.
In addition to the vastgluing capabilitiescharacteristicof
them,scriptinglanguagesallow the creationof hybrid ap-
plicationswherecomputationallyintensiveelementsareim-



plementedin suchlanguagessuchasC or C++ andthere-
maininginfrastructureis scripted.

This article suggestsa new approachto how scripting
maybeusedin GIS applicationsanddescribesa program-
ming framework developedby theauthorsto illustratethis
approach. This introductory sectionis followed by sec-
tion 2, which depictsthe authors’perceptionof the prob-
lems involved in building a generalizedGIS interfacefor
a general-purposescripting language. Section3 presents
theproposedsolution,ashortoverview of theexistingtech-
nologiesand populargeneral-purposescripting languages
andexplainswhy certaindesigndecisionsweremade.Sec-
tion 4 expandson the framework architectureand im-
portant implementationand developmentprocessdetails.
Characteristicsandlimitations of the resultingsystemand
prospectsfor futuredevelopmentarediscussedin section5,
followedby conclusionsin section6.

2. Problems

All major GIS software packageshave long provided
somekind of ascripting(or macro)languageandthoselan-
guagesarewidely usedby GISdevelopersfor bothin-house
and deliverable applications. For example, ARC/INFO
AML was used to develop an extensive suite of user-
friendly add-onsfor themainsystemcalledArcTools. Ar-
cView Avenueis thefoundationfor avastarrayof ArcView
extensionsdevelopedby independentcompaniesandindi-
viduals. MapBasicfulfills a similar role for MapInfo. A
freesoftwarepackageGRASSusesadifferentapproach,re-
lying on integrationwith externalscriptinglanguagessuch
asUNIX shellscriptsandTcl/Tk.

Despite being vital in many situations, application-
specificmacrolanguagesusually lack featuresthat would
allow simple and effective integrationwith other applica-
tionsandcomponents.Typically, tools for integrationwith
externalapplicationsare limited to the ability to load dy-
namiclibrariesandcall their functions,issuea shell com-
mandor accessan external databaseserver. Capabilities
for operationswith spatialobjectsarenaturally limited by
the data model of a specific application. Rather often,
application-specificmacrolanguageslagbehindin termsof
syntacticrichness,flexibility andexpressivenesscompared
to maturelanguages.

On the otherhand,general-purposescriptinglanguages
like Perl or Visual Basic have evolved into sophisticated
frameworks for integrating applicationsand components
from variousapplicationdomains. Interfacinga software
packageor componentto a general-purposescripting lan-
guagebenefitsbothof them:

� software application is augmentedwith a mature
macrolanguage

� capabilitiesof theapplicationbecomeavailableto the
programmersin the target scripting languageandthe
applicationmaybeviewedasanextensionor module
of thatlanguage

� throughthe scriptinglanguageit becomespossibleto
interfacethe software packageto the vast library of
modulesor extensionsof that scripting languageand
viceversa

� thedependency of a scriptingprogrammeron a single
softwarevendoris alleviated.

Amongthemostpopularextensionsfor scriptinglanguages
are interfacesto databasemanagementsystems(DBMS).
Forexample,in thecaseof Perl,specificinterfacesfor many
individual databaseservers had beendevelopedindepen-
dently. Now, however, mostof thedevelopercommunity’s
efforts are concentratedon the Perl DBI (Databaseinde-
pendentinterfacefor Perl), which enablesa standardized
approachtowardsaccessingrelationaldatain amannersim-
ilar to thatof JDBCor ODBC.This typeof databaseinter-
faceusesastandardizedapplicationprogrammers’interface
(API) thatiscommonthroughaseriesof driversconformant
to it. Driversperformactualaccessto thedatabaseservers
and typically are loadabledynamicallyat run time. APIs
have becomestandardizedto the point where no change
in the calling script is neededto switch one underlying
databaseinto another, that is performedby loadinganother
setof drivers.

Othercommontypesof extensionareweb-relatedtools
suchasHTML or XML generators,parsers,interfacesto
HTTP andmail servers.Perl is rightfully calleda language
of theWorld WideWeb. In ouropinion,Perlsuccesson the
WWW canbeattributednot only to its rich text processing
capabilities,but to a greatextent to its ability to easily in-
tegratedatabaseswith webapplications,owing to theavail-
ability of the above mentionedextensions. A substantial
numberof webapplicationsarejust frontendsfor database
serversprogrammedin Perl(or anotherscriptinglanguage).
Typically, suchscriptstranslaterequeststo thewebservers
into databasequeriesandthenreformatthequeryresultinto
HTML documentswhile performinga numberof special
taskslike generatingrasterimageson the fly or userau-
thentication.

Thereareseveral particularlynotabletrendsin the area
of GISapplicationsoftware.MostmajorGISsoftwareven-
dorsaremoving in thedirectionof enterprise-levelGISsoft-
ware infrastructure. This involves shifting from classical
desktopGIS applicationsto a multi-tier modelwherespa-
tial databasesresideon servers and are sharedby a vari-
ety of clients. Major productsin this group are the Spa-
tial DatabaseEnginefrom ESRI Inc., OracleSpatialfrom
Oracleandspatialdatahandlingextensionsfor the server
productsof many databaseservervendors.

2



Anothertrendis theproliferationof web-basedGISsoft-
ware. Thereis a plethoraof commercialandother prod-
ucts available that are very well coveredin the literature
(for example,see[4]). Eventhoughtherearestill very few
webGIS applicationsof practicalapplicability, theamount
of interestshown andinvestmentbeingmadeby theindus-
try inspiresoptimism. Hopefully with a new generationof
web standards,suchas GeographyMarkup Language[8]
andOpenGISWeb Map Server InterfaceSpecification[2],
webGISwill beableto forgeits way into themainstream.

In light of this,developmentof a framework for ascript-
ing languagesimilar to the Perl DBI or JDBC but geared
towardsthe handlingof spatialdatawould be highly de-
sirable. This paperexaminesthe feasibility, architecture
andearly resultsof the building of a framework of object-
orientedmodulesfor Perl that is designedto provide uni-
form accessto various sourcesof spatial data from Perl
scripts.In theremainderof this articlesaidframework will
be referredto as GISI.pm, which standsfor “Geographic
InformationSystemsInterface”and.pm is a file nameex-
tensionthatis usedto designatea Perlmodule.

In orderfor sucha framework to achieve a comparably
high level of capabilitiesfor GIS applicationsas the Perl
DBI or JDBC provide for databaseapplications,accessto
the elementsof spatialdatastructuresmust be provided.
Thefundamentalproblemfor accessto spatialdatais adata
model.Thereareseveralaspectsto thisproblem.

First, frameworks like JDBC or the Perl DBI are built
aroundrelationaldatabasesthatarealreadyprettywell stan-
dardizedand whosedatamodel is very well studiedand
widely accepted.Thereis no suchcommondatamodel in
GIS,norcanit bebuilt asaproductof summingupthedata
modelsusedin variousGIS packages.Second,dueto the
sophisticationof spatialdatamodelsthereis nodirectmap-
ping of their elementsinto scripting languagedatastruc-
turesasin thecaseof therelationaldatamodel.For exam-
ple, in thespatialdatamodelwe have to dealwith suchno-
tionsasgeometryor topologythatdo nothavecounterparts
in standardprogramminglanguageconstructs.At thesame
time,suchnotionsfrom relationaldatabasesasrowsor data
typesmapeasily. Third, thesamephenomenain GIScanbe
representedusingabsolutelydifferentdatamodelsdepend-
ing uponthe requirementsor analyticalproceduressought
(e.g. rasterrepresentationsandvectormodels).More often
thannot theserepresentationscould be mappedinto each
otheronly with significantdataloss.

In order to addressthe first aspectof the problemwe
have chosenthe OpenGISAbstractSpecification[7, here-
after referredto as"the Abstractspecification"]to beused
asacommonspatialdatamodel.Thisspecificationis being
developedfrom the very beginning to be a glue between
datamodelsof as wide a variety of GIS applicationsas
possible,somethingwhich meshesvery well with the pur-

poseof scriptinglanguages.Thespecificationis recognized
andsupportedby the industry andhopefully this will en-
sureits topicality for a long time to come.Also many ven-
dorsareexpectedto develop or bring existing productsto
compliancewith the OpenGISspecification.Commonali-
tiesbetweenthedatamodelsof thecompliantproductsand
our framework will simplify driver creation. Unlike some
otherattemptsto suggesta commonspatialdatamodel,the
OpenGISSpecificationdemonstrateshealthyprogressand
continuousupdating.Not the leastreasonfor choosingthe
specificationis its breadth,somethingwhich would beun-
realisticfor a limited groupof developersto achieve.

To addressthesecondaspect,wearedevelopingnotonly
theAPI itself but ahierarchyof abstractclassesto represent
thespatialdatamodelin ourframework. It hasbeendecided
not to addressthe issueof representingthe samephenom-
enain several datamodels,at leastat the currentstageof
development,but to shift it to GISI.pmextensionsinstead.

3. Proposed solution

Several powerful and popularscripting languagesmay
beconsideredfor theoutlineddevelopment.We think that
the following threerequirespecificmention: Perl, Python
and Tcl/Tk. Theseare all free, mature,general-purpose,
have large numbersof extensionsandhave beenusedfor
someGIS applications.In a practicalsense,scriptinglan-
guagesmay be characterizedby such featuresas simple
syntax,rapiddevelopmentandimplementationascompared
with systemprogramminglanguages,goodGUI capability,
cross-platformportability, extensibility, andtheability to be
usedeitherfor standaloneapplicationsor to beembedded.

Scriptinglanguageshave oftenbeencategorizedashav-
ing particularstrengths,but somemay not be widely ap-
plied outsideof theseareas.For example,Visual Basic is
easyto learn, but is restrictedto Windows environments.
JavaScript’s smoothintegrationwith Web browsersis well
known, but it is moreor lesslimited to that environment.
Of the more general-purposelanguagesTcl is known for
its GUI capabilities,Perl for its string-handlingandPython
for its object-orientation.Most canbe embeddedin appli-
cationsto varyingdegreesor usedstandalone,andmaybe
connectedto otherapplicationsor protocols.

3.1. Tcl/Tk

Tcl (Tool CommandLanguage),in combinationwith its
graphicaluserinterfacetoolkit (Tk), is probablythe most
popularscriptinglanguage.In additionto its proven GUI
capabilities,Tcl/Tk displaysconsiderableportability asits
scriptscanrun on Unix, Windows andMacintosh.Further,
its versatility canbe attestedto by the diversity of Tcl ap-
plications.

3



The fact that the Tk toolkit waswritten in Tcl is cited
asproof of Tcl’s greaterGUI capabilities. Although both
PythonandPerlhave packagesto allow theuseof Tk from
theirscripts,it will naturallywork betterwith Tcl thanwith
otherscriptinglanguages.Existenceof the Tcl interpreter
as a C library packagearguesgreaterembeddabilitythan
Perl,which wasnotdesignedto beembeddable.

Tcl/Tk hasa historyof beingusedfor GIS applications.
As wasmentionedearlier, it wasusedto developeda GUI
for thefreeGIS GRASS.

3.2. Python

Python sharesthe samecommonset of featureswith
othergeneral-purposescriptinglanguages,but differsfrom
mostin its fundamentalobject-orientationandbecausethe
corelanguagesupportscreationof classes,useof multiple
inheritance,definition of methods,operatorsoverloadand
throw andcatchexceptions.Its developmenthasincluded
influencesfrom Modula, Lisp and Smalltalk. Python’s
high-level built-in datastructures,dynamictyping anddy-
namicbindingarefeatureswhich give it considerablepop-
ularity for useasa “glue” language.

Anotherof Python’s characteristicsis its systematicity.
That Python’s clean,consistentsyntaxmay not be asrich
asthat of otherscripting languagesis toutedasoneof its
strengths,sincemorecasualuserswill be lesslikely to be
overwhelmedasthey might bewith a richer, andtherefore
moreburdensome,syntax. The greaterregularity andlack
of shortcutsto berememberedarealsoillustrativeof higher
systematicity. Suchcharacteristicsequallyresult in a high
degreeof maintainabilityandfacilitatethe taskof reading
code,an activity which Pythonemphasizesover writing.
Thereis a versionof PythoncalledJPython,which runson
topof theJavavirtual machine,thatis written in 100%Pure
Java. Its featuresincludeseamlessscriptingfor Javaandthe
ability to usearbitraryJavaclasses.

A package called AVPython (http://www.
geocities.com/brucedodson.rm/avpython.
htm) has been developed to enable Python language
supportfor ArcView GIS. It consistssimply of a dynamic
link library and an ArcView extension. The developer
rationalizedhis decisionto use Python as due to strong
COM supportandcommonalities– syntaxandreadability
– betweenPythonand ArcView Avenue,while acknowl-
edgingthat implementingPerl would have beenalmostas
simple.

3.3. Perl

Sometimestheacronym Perlis saidto standfor “Pattern
ExtractionandReportingLanguage”and this is how Perl
is mostlyusedandperceivedby theprogrammingcommu-

nity. Indeed,superiorityof Perl in termsof text processing
andpatternmatchingresultedin thereimplementationof its
patternmatchingcapability in the majority of othermain-
streamprogramminglanguages.Perl canbe characterized
by almostany buzzword trait of a scriptinglanguage:it is
easyto learn,fastto execute,andhasbeeninterfacedto an
uncountablenumberof othersystemsandlibraries.

Object-orientedfeaturesof Perl requirespecialmention
and explanation. Originally Perl was not object-oriented
and the ability to aggregatedataand methodsin a single
packagehas appearedonly in version 5 in 1993. Even
thoughPerl is not aswell-known asPythonfor its object-
orientedfeatures,its objectmodelis very powerful andthe
least restrictive. Also, it very naturally combineswith a
non-object-orientedstyleof programming.Unlike in most
otherlanguages,object-orientedfeaturesin Perlat largeare
notapartof the“core language”but ratherbuilt of elements
thatwerealreadypresentin Perl for thepurposesof struc-
tural programming.Objectsin Perl arejust referencesas-
sociatedwith methodsfrom an arbitrarymodule. This is
achievedusingthePerloperatorbless. Methodsaredis-
tinguishedfrom genericfunctionsby receiving objectrefer-
encesin thefirst positionof theargumentlist [11].

Perl lacksmany object-orientednotionssuchasabstract
andstaticclasses,protectedandfinal methodsor variables.
All constructsthatarereally requiredin big object-oriented
projectscanbe simply achieved by the developmentteam
following certainconventions.This correspondsvery well
to Perlphilosophy. For example,privatemethodshaveto be
implementedby just not mentioningthemin thedocumen-
tation.

This kind of looseobjectmodelhasit prosandcons.In
situationswherethespeedof developmentoutweighsissues
of codecleanliness,lack of restrictionsmay conferadvan-
tage.However, biggerandheavily object-orientedsystems
likeGISI.pmhaveto becreatedverycautiouslyandstrictly
following thepreviouslyagreedconventions.

In GISI.pmdevelopmentwehavebeenusingUML (Uni-
fied ModelingLanguage)chartsto limn thesystemdesign.
In our opinion UML is as good for Perl as for any other
object-orientedlanguage.However no UML mappingfor
Perlexists,sosomeminoradaptationsareneededto beable
to reflectPerl specifics.Later in this paperwe usefigures
thatadhereto theUML 1.1specification[10].

Perlhasa ratherlimited historyof usein GIS, although
it is sometimesusedasan interfacelanguagefor packages
like the MapScript scripting interface for the MapServer
– a “CGI-basedapplication for delivering dynamic GIS
andimageprocessingcontentvia the World-Wide Web” –
at the University of Minnesota(http://mapserver.
gis.umn.edu/).

4



3.4. Why Perl

Our decisionto choosePerl was influencedby several
factors. Oneof the major factorswasteamexpertisewith
the languageandthe fact that a stashof unconnectedPerl
scriptshad alreadybeendevelopedat our company for a
varietyof GISdataprocessingtasks.

The secondimportantadvantageof Perl is a plenitude
of readily available languagemodules, which seemsto
be wider than exists for other languages.Thesemodules
sparedus a noticeableamountof time andeffort through
not having to implementthosefunctionsthat had already
beencreatedby otherdevelopers. Moreover, sucha wide
variety of moduleswould allow us to interfaceour frame-
work to somethingthat we hadnot alreadythoughtof. In
addition,theComprehensivePerlArchiveNetwork (CPAN,
http://cpan.org/) andthemoduleof thesamename
allow automateddownloadandupdateof Perlmodulesin-
stalledonalocalworkstation.Thanksto CPAN weneednot
fearcomplexity of theinstallationprocedureof ourmodules
by a userevenif a lot of dependenciesuponothermodules
arepresent.

We were first attractedby the Perl DBI that provides
standardizedaccessto many databaseserversandwhichhas
alreadybeenmentionedin this paper. Froma development
perspectivewe arerelyingon thefollowing modules:

� Tie::IxHash– providesimplementationof an ordered
hasharray; that is, a datastructurewhoseelements
may be accessedusing either hashkeys or array in-
dices

� URI – a genericunified resourceidentifier (URI) that
weareusingto implementdriverspecifiers

� A groupof modulesthat implementsdesignpatterns
asdescribedin [3]; helpsdevelopersto facilitategood
object-orientedprogrammingpracticeswith Perl

� FreezeThaw – supportfor Perlserializedobjects.

In termsof potentialapplicationsareasthatour framework
canbeinterfacedto, wehaveconsideredseveralmodules:

� mod_perl– allows the writing of Apacheweb server
modulesin Perl

� CGI – simplifieswriting cgi scriptsin Perl
� a groupof moduleswhich provideaccessto andoper-

ationon rasterimages(Imagie::Magicandothers)
� modulesthat facilitate integration into various dis-

tributedcomputerenvironments,suchasCORBA and
OLE/COM on theWindows platform; in future, these
moduleswouldprovidea relatively simplepathfor in-
terfacingGISI.pmto otherapplicationsconformingto
theOpenGISimplementationspecifications[5] and[6]

� avastarrayof modulesto readandgenerateXML and
othermarkuplanguages

� userinterfacetoolkits: PerlTk, Gtk-Perl, X11-Motif,
PerlQt.

4. Architecture

GISI.pm is an object-orientedAPI (Application Pro-
grammingInterface) for accessingspatialdata from Perl
scripts. GISI.pm is intendedto define a set of classes
and conventionsto provide a consistentinterface to ac-
cessspatialdataindependentof underlyingformat or ac-
cessmethod. GISI.pm is basedon the OpenGISAbstract
specificationVersion4 [7].

Perl
script
that
uses

GISI.pm 
API

ArcView SHAPE
driver

MIF/MID
driver

other
drivers

.shp & .dbf
files

.mif & .mid
files

other
storage

Classes,
Conventions

GISI.pm

Oracle Spatial
driver

Oracle
Spatial

GISI.pm scope

Figure 1. Architecture of a GISI.pm applica-
tion

GISI.pmis an interfacelayer providing communication
betweenPerlscriptsutilizing theGISI.pmAPI anddrivers
that provide actual accessto the sourcesof spatial data
(Fig. 1). In the applicationarchitecture,which usesPerl
asa glue betweenvariouspiecesof the GIS softwareand
librarieswritten in avarietyof programminglanguages,the
role of GISI.pm is that of a dataaccesslayer. All effort
hasbeenmadeto keepGISI.pm thin and limit its scope
andpurposeto dataaccess.An additionalrequirementfor
GISI.pm is the ability to preserve the maximuminforma-
tion that comeswith a dataset.In this regardour ultimate
goalis to provideaccessto all informationcarriedin spatial
datasets(geometry, attributes,metadata,etc.) asdefinedin
theAbstractspecification.

4.1. Architecture overview

GISI is implementedasa setof Perl modulescompris-
ing the coreGISI.pmandoptionaldrivers. GISI.pm itself
performsthe following actions: loading of the specified
driver(s),dispatchingmethodcalls to thedrivers,anderror
checkingandhandling.All otheractionsshouldbe imple-
mentedoutsideof GISI.pm.Thedriversimplementsupport
for agiventypeof spatialdatasource,whichcanbeafile in
someformat,adatabaseserveror almostanythingelse.

5



«abstract»
Data Model

Feature

Collection

Geometry

Core Modules
Base Module

«factory»
Driver Loader

+connect()
+disconnect()

GISI URI

Driver

«abstract»
ConnectionsOther ...

Connection

+query()

«creates»

«actual»
Connections

«actual»
Data Model

Implementation of 
the supported 
subset of the data 
model

Connection

Figure 2. GISI.pm elements

The basicelementsof the core GISI.pm are the driver
loader, featurecollection identifier, an abstractclassthat
representsaconnectionandaframework of abstractclasses
that representthe spatialdatamodel(Fig. 2). Eachdriver
consistsof a setof Perlmodulesthat implementa connec-
tion classand thoseclassesof the spatialdatamodel that
aresupportedby the driver. Therearealsoseveral utility
classesin GISI.pm,includingclasseswhich performfunc-
tions commonfor many drivers,suchasparsing,andvar-
ious factoriesand iteratorswhich supportthe spatialdata
model.

GISI.pm’s operationis rathersimilar to that of the Perl
DBI. Thedriver loaderis astaticclassthatimplementstwo
significantmethods– connect() anddisconnect().
connect receives an object or a string that specifiesa
datasourceandreturnsanobjectthatimplementsaconnec-
tion. Optionally, driver-specificparametersmay be speci-
fied. Theconnectionclasshasmethodsfor retrieving or cre-
atingfeaturecollections.Thelattercanbeiteratedthrough
with the helpof cursorsor appendedwith new featureob-
jects,if allowed.

4.2. Spatial Object Model

In terms of the object model of spatial data, as was
mentionedearlier, GISI.pmrelieson theOpenGISAbstract
SpecicationVersion 4 [7]. Only a subsetof this object
model, which is describedbelow, hasbeenimplemented
(Fig. 3).

Thebasicunit in theOpenGISobjectmodelis a feature
(FT_Feature on Fig. 3). A featureis an abstractionof
a real-world phenomenonandmaybeassociatedwith a lo-
cationrelative to theEarth. Eachfeatureis specifiedby its
attributesetandbelongsto somerecognizabletype(feature

Geometry

FT_FeatureType
-<name>: type

FT_Feature
-ID: 
-FeatureType: 
-Geometry: 
-<Property>: value
+get()
+set()

FT_FeatureCollection

+next()
+append()
+rewind()

AT_AttributeType

FT_FeatureAttribute
-type: 
-value: 

1

0..*

0..*

1..*

0..*

0..*

See separate diagram

Figure 3. Implemented subset of the OpenGIS
object model (simplified)

type,FT_FeatureType). Featuretypedefinesalist of at-
tributeswhichdistinguishthatfeature.In suchalist eachat-
tributeis characterizedby anattributenameandanattribute
type(AT_AttributeType). Featuresareorganizedinto
featurecollections (FT_FeatureCollection). Fea-
turesof a single featurecollectionhave the sametype (in
theoriginal specificationtypesthatareinherentof the fea-
turecollectionfeaturetype).Oneof theattributescanbeof
a specialtype“Geometry”thatdesignatesfeatureposition-
ing relative to theEarth’ssurface.

Geometry(Fig. 4) objects representsetsof points in
a particular coordinatesystem. The sets of points are
representedby DirectPosition objects.All geometry
objects are inherent of the GM_Object class. Basic
subclassesof GM_Object are geometric primitives
(GM_Primitive) and aggregates (GM_Aggregate).
Primitive geometries include points, curves and sur-
faces (designated as GM_Point, GM_Curve and
GM_Surface) that represent0-, 1-, and 2-dimensional
objects respectively. The specification also defines
3-dimensional objects (solids), which have not been
implemented. Points (GM_Point) contain a sole posi-
tioning objectthatconsistsof a singlecoordinatetuple. A
curve (GM_Curve) is an orderedset of curve segments
(GM_CurveSegment) and a surface(GM_Surface) is
an orderedsetof surfacepatches(GM_SurfacePatch).
Aggregates (GM_Aggregate) are geometry objects
that consist of other geometryobjects. Multiprimiti ves
(GM_MultiPrimitive) containgeometryobjectsof a
singlesubclassof theGM_Primitive class.

Positioningis representedby thedescendantsof theco-
ordinatepoint class(CoordinatePoint), which is a tu-
pleof coordinatesin n-dimensionalspace.ClassDirect-
Position is intendedto associatecoordinateswith aspa-

6



CoordinatePoint
-pointvector: 
+dimension()

DirectPosition

GM_Object
-SRS: 
+isEmpty()
+isSimple()
+isClosed()
+boundary()
+centroid()
+create_iterator()

GM_Primitive

GM_Point

+position()

GM_Surface

+patches()
+area()
+perimeter()

GM_Curve

+segments()
+length()

GM_Aggregate

GM_SurfacePatch

+interpolation()
+area()

GM_OrientedCurve
-orientation: $

GM_MultiPrimitive

GM_MultiPoint

1

1

1..*

GM_CurveSegment

+interpolation()
+startPoint()
+endPoint()
+length()

0..*

0..*

1..*

Feature

See separate diagram

1

Figure 4. Implemented subset of geometr y model (simplified)

tial referencesystem.Specificinterpretationof thedimen-
sionsis donein thesubclassesof DirectPosition.

4.3. Implementation Details

In order to straightline the use 1 statementin cus-
tom scripts and reduceload on the Perl interpreter, the
GISI.pmAPI is groupedinto severalPerlmodules.In most
casesscriptprogrammershaveto specifyonly asingleuse
GISI; statement.Othernon-driver modulesmay needto
bespecifiedif aprogrammeris goingto instantiatehisown
features,geometryor positioningobjects.

There are several utility classhierarchiesthat are in-
cludedin GISI.pm. In addition to standardmethods,ac-
cessto theelementsof geometryobjectscanbedoneusing
geometryiterators. Thereare two kinds of iterators: one
to iteratethroughprimitive geometriesandanotherto iter-
atedirectly throughpositioninginformation.Geometryob-
jectscanbecreatedwith thehelpof geometryfactories.In
mostcasesthereis no needto createspecialfactoryclasses
in Perl sincepassinga classnameto a function automati-
cally allows parameterizationof objectinstantiation.How-
ever, a specialfactoryclassis neededfor geometryobjects
to unify their creationdirectly from positioning informa-

1use Module; in Perlhasthesamemeaningas#include <mod-
ule.h> in C

tion as creationof curvesand surfacesinvolves the addi-
tional stepof creatingcurve segmentsandsurfacepatches.
Featurecollectioncanbetraversedusingoneof thecursor
classes.Thereareseveraltypesof cursorsprovidingvarious
additionalfeatureslike caching,filtering andothers. In all
casestheuseof iterators,cursorsandfactoriesis apreferred
methodfor accessingtheelementsof or creatingaGISI.pm
datastructure.Also thereis a specialhierarchyof classes
thatrepresentattributetypes.

4.4. Drivers

GISI.pm drivers must comply with the definitions as
shown in Fig. 4. Due to the outstandinggluing capabili-
ties of Perl, driverscanbe written eitherin Perl itself or a
mixture of Perl andotherlanguagessuchasC. For exam-
ple, the driver for ArcView SHAPE files that comeswith
GISI.pm is built on top of a freely available library writ-
ten in C (ArcView Shapelibby FrankWarmerdam,avail-
able from http://gdal.velocet.ca/projects/
shapelib/). Typically, writing a driver in C involvesa
two-layer implementationwith one layer interfacing a li-
brary to Perl and the other layer interfacingraw Perl data
structuresinto GISI.pmobjects.

Interfacing Perl to C is easy, owing to SWIG. The
interface compiler SWIG (Simplified Wrapper and In-

7



terfaceGenerator, http://www.swig.org/) is com-
monly used to facilitate the connecting(gluing) of pro-
gramswritten in systemprogramminglanguages,like C,
C++andObjective-C,with scriptinglanguages,particularly
Perl,Tcl/Tk andPython.SWIG usesthedeclarationscon-
taining function and methodprototypescommonly found
in C/C++headerfiles to generatethegluecode(wrappers)
neededby scriptinglanguagesfor accessingtheunderlying
C/C++ code. One more advantageof SWIG is indepen-
denceof Perl implementation;therefore,with thenext ma-
jor upgradeto Perl, when the Perl core is expectedto be
rewritten in C++,andafterSWIGis updatedto thatrelease,
only recompilationwill beneeded.

Currently (May 2000), the following driversof general
interesthave beenimplemented: ArcView SHAPE, sev-
eral ARC/INFO generate commandformats,MapInfo
MIF/MID andCSV (commaseparatedvalue)andDBASE
formatsfor tabulardata.

4.5. Development strategy

From the very beginning GISI.pm was gearedtowards
practicalneedssuchasapplicationprototyping,file format
conversionandrelatedtasks.Becauseof this condition,the
developmentteamcould not engagein pursuingthe goal
of implementingall desired(andevenessential)featuresat
once. The problemis exacerbatedby a certainlevel of in-
terdependenciesof the blocks of the system. To address
this problemwe arefollowing a developmentpathsimilar
to the “incremental-build model” describedin [1, Chapter
19]. Theideaof this approachis to firstly developa system
skeleton, then createstubsinsteadof systemcomponents
andgraduallyreplacethemwith actualworking code– this
waythereis alwayssomethingoperational.Owingto Perl’s
weak typing anddynamicnature,creationof stubsis rel-
atively easyand was attemptedin the caseof the feature
identifier module. Thereare several relevant partsof the
Abstractspecificationthathave not yet beenimplemented,
or whichhaveonly beenimplementedpartially.

As for the Geometrypackage,the current implemen-
tation lacks any topology classes. In the specification
topology is presentedas a parallel hierarchy of [0..3]-
dimensionalobjects. Metadataand spatial referencesys-
temsarenot implementedeither, bothof which areof con-
siderablepracticalvalue.Thebiggestmissingelementis the
coverage.In theAbstractspecificationacoverageis defined
asa “2-dimensionalmetaphorfor phenomenafound on or
neara portion of the Earth’s surface”. Griddedcoverages
areof particularinterestasthey representsuchcommonly
usedcategoriesof spatialdataasdigital elevation models,
imagesandphysicalfields.

Identifiersareonly partially implemented.Currently, a
featureidentifier is expectedto bea scalarvalueor a refer-

ence. Featurecollectionshave driver URIs astheir identi-
fiers.Thereis alsoaweakrequirementfor anidentifierto be
uniquewithin thescopeof a featurecollection.Whatto as-
signto thefeatureidentifieris at thediscretionof thedriver.
If a datasourcehasa notion of featureidentifiers,thenits
valueis assignedto theGISI.pmfeatureidentifier. In other
casesanattributevalueor featuresequentialnumbercanbe
usedasa featureidentifier, which shouldbespecifiedupon
driver initialization.

Similar to Perl itself, our developmentstrategy features
a strongtestsuit. Elaboratetestingis of specialimportance
for Perl scriptssince,due to the dynamicnatureof Perl,
mosterrorsexposethemselvesonly duringrun-time.There
is a setof testsfor eachmethodof eachmoduleto ensure
thateachcomponentworksproperly.

To ensureproper interactionbetweencomponentswe
areplanningto usereferencedatasetsandto checkif they
are properly convertedto and from variousformats. The
datasetsshouldberepresentativeof all typesof information
andall situationssupportedby GISI.pm. For this purpose
wehavedevelopedarelatively simplescript(gisconvert.pl)
that is at thesametime a general-purposeGIS formatcon-
verter. The intentionof the script is to be able to convert
properlyfrom oneformat to anotherwith minimal format-
specificinformationprovided.

5. Results, Limitations, Future Development

At thecurrentstageof development(May 2000)wehave
aworkingsystemthathasshown itself usefulin thefollow-
ing situations:

1. Conversionof rarely usedanduniqueformats: it is a
verycommonsituationthatdataexistsin someformat
that is eitheroutdated,supportedby noneof theavail-
ablepackagesor supportof thatformatis broken;with
thehelpof GISI.pmwriting only onehalf of thecon-
verterwouldbeenough.

2. Correctionof improperly formattedfiles: this often
happenseven to commercialconverterswhen a file
producedby onesoftwarepackagein theformatof an-
otherpackageis not acceptedby thetargetpackage.

3. Conversion of commonly used file formats: even
thoughthereare quite a numberof commercialand
free utilities for this task, the advantagesof having
GISI.pmarethatit is cross-platform,free,fastandca-
pableof handlingnon-standardsituations.

4. Explorationof andcollectingstatisticson thedatasets
withoutconvertingtheminto any particularpackage.

8



5. Custom geometric transformations and projec-
tion conversion without using commercial pack-
ages (with the help of PROJ.4 originally de-
veloped by USGS and currently available from
http://www.remotesensing.org/proj/).

As was mentionedearlier, benefitsof scripting languages
comeat the cost of slower applicationspeed. However,
scriptswritten with thehelpof GISI.pmarenot asslow as
wasoriginally expected.For example,in convertingcom-
monfile formats,GISI.pmis fasterthansomecommercial
products.Profilingresultsshow thatmostof thetimeis usu-
ally spentin parsermethods. Parserimplementationthat
we areusing is far from beingeffective, so we think that
enhancementis possible.

Thereare seriousshortcomingsin the existing version
of GISI.pm. First of all, lack of the implementedblocks
suchasmetadataor spatialreferencesystemssupportmen-
tionedearlierdoesnot allow thebuilding of practicallyus-
abledriversfor many GIS formats.Thesecondproblemis
insufficienterrorhandlingthatprobablyshouldbemodeled
after the Perl DBI. In somecaseslack of supportfor con-
currentaccessto thedatasetimpedesusability.

Thereis no doubtthatGISI.pmis currentlyin its alpha-
versionstage.Transitionto thebetastagewill beachieved
whenthefollowing elementsareimplemented(in nopartic-
ularorder):

1. Topologysupport

2. Spatialreferencesystems

3. Metadata

4. Featureidentifiers

5. Griddedcoverages

6. InternationalizationandUnicode

Theobviousdirectionfor futuredevelopmentis to support
morefile formatsanddatasources.Thedevelopmentteam
hasexperiencewith interfacingGISI.pmpredecessorsto re-
lationaldatabaseswith spatialdataextensions.It wouldalso
beinterestingandrelatively easyto developdriversfor non-
spatialvectorformatslike, for example,SVG [12].

6. Conclusions

Thefirst conclusionis thattheapproachusedin GISI.pm
worksandis effective. It is far moreeffective thanwriting
haphazardscriptsto fulfill thesamecircleof tasks.GISI.pm
has already saved our company a noticeableamount of
working hours by encouragingcode reusethus reducing
spendingon GISrelatedprogramming.

Basedon our experiencewe can suggestat least one
enhancementfor the Abstractspecification,relatedto the
possibilitythatfeaturecollectionmaybearedundantclass.
In the currentversionof the specification,featurecollec-
tion is a subtypeof featurethat is usedto aggregateother
features. In the GISI.pm framework a featurecollection
mostcloselycorrespondsto astatementhandleor resultset.
However, in this caseit shouldnot bea subclassof feature
eventhoughit maypossesssomegeometriccharacteristics
suchasa boundingbox. More confusionwill begenerated
if the notion of featurecollectionsis appliedto coverages,
especiallygrid coveragefeatures.

Oursuggestionis to usejustordinaryfeaturesin placeof
featurecollections.Traversingof featurecollectionscanbe
performedwith greaterflexibility by definingvariousitera-
tors(cursors)on thelevel of implementationspecifications.

We especiallywant to mentionthat thegeometryspeci-
fication hasmaderemarkableprogress,andtodayis much
moreflexible andmaturecomparedto simplefeatures.

ConcerningPerlobject-orientedfeatures,wewouldsug-
gest including in either the core languageor developing
modules the capability to perform a variety of object-
oriented checkssuch as for function arguments,private
variables,final methodsandothers. All thesecapabilities
shouldbeoptionalandswitchableon demand.Thiswill al-
low scriptanddriverprogrammersto performfewermanual
checksonthecodeto ensureits object-orientedcleanliness,
while preservingtheability to write codefastwhenthereis
aneed.

In generalwe think thatscriptingin GIS hasa bright fu-
turefor componentized,glue-orientedapplicationsandpro-
totyping. Frameworkssimilar to GISI.pm,if developedfor
avarietyof scriptinglanguages,canbeusedto gluetogether
variousapplicationsandcomponents:dataaccessandstor-
agesystems,simulationmodels,computationallyintensive
algorithms,webanduserinterfaceapplications.

References

[1] BROOKS JR, F. P. TheMythical Man-Month:Essays
onSoftwareEngineering. Addison-Wesley, 1995.

[2] DOYLE, A. Web Map Server Interface Specifica-
tion, 1.0.0 ed. Open GIS Consortium, 35 Main
Street, Suite 5, Wayland, MA 01778 USA, April
2000. http://www.opengis.org/techno/
specs/00-028.pdf.

[3] GAMMA , E., HELM , R., JOHNSON, R., AND VLIS-
SIDES, J. Design Patterns: elementsof reusable
object-orientedsoftware. Addison-Wesley, 1994.

[4] L IMP, F. W. Mappinghits warp speedon the world
wideweb! Geoworld12, 9 (September1999),32–42.

9



[5] OPEN GIS CONSORTIUM. OpenGISSimple Fea-
tures SpecificationFor CORBA, 1.0 ed. 35 Main
Street, Suite 5, Wayland, MA 01778 USA, March
1998. http://www.opengis.org/public/
sfr1/sfcorba_rev_1_0.pdf.

[6] OPEN GIS CONSORTIUM. OpenGISSimple Fea-
turesSpecificationFor OLE/COM, 1.1 ed. 35 Main
Street, Suite 5, Wayland, MA 01778 USA, May
1999. http://www.opengis.org/techno/
specs/99-050.pdf.

[7] OPEN GIS CONSORTIUM. The OpenGIS(tm)Ab-
stract Specification, 4 ed. 35 Main Street,Suite 5,
Wayland, MA 01778 USA, March 1999. http:
//www.opengis.org/public/abstract/.

[8] OPEN GIS CONSORTIUM. Geography Markup
Lamguage (GML), v1.0 ed. 35 Main Street,
Suite 5, Wayland, MA 01778 USA, April 2000.
http://www.opengis.org/techno/
specs/00-029.pdf.

[9] OUSTERHOUT, J. K. Scripting: Higher
level programming for the 21st century.
IEEE Computer 31, 3 (March 1998), 23–30.
http://www.scriptics.com/people/
john.ousterhout/scripting.html.

[10] RATIONAL SOFTWARE AND OTHERS. UML Nota-
tion Guide, 1.1ed.,September1997.http://www.
rational.com/uml/.

[11] WALL , L ., CHRISTIANSEN, T., AND SCHWARTZ,
R. L. ProgrammingPerl, 2nd ed. O’Reilly & As-
sociates,Inc, September1996.

[12] THE WORLD WIDE WEB CONSORTIUM. Scalable
VectorGraphics(SVG)1.0 Specification,W3CWork-
ing Draft. 545 TechnologySquare,Cambridge,MA
02139USA, March2000.http://www.w3.org/
TR/SVG/.

10


