Scripting in GIS Applications:
Experimental Standards-based Framework for Perl

AlexandreSorokine
Regional Sciencdnstitute
4-13Kita-24 Nishi-2 Kita-ku
Sappord01-0024Japan
Phonet+81-11-717-6660
Fax+81-11-757-3610
sorokin@vtt.co.jp

Kurt Ackermann
Regional Sciencdnstitute
4-13Kita-24 Nishi-2 Kita-ku
Sappord01-0024Japan
Phonet+81-11-717-6660
Fax+81-11-757-3610
kurt@vtt.co.jp

Researclsession

Abstract

Scriptinglanguageshavelong beenutilized by GIS ap-
plication developes to achieve higher levels of program-
ming and shorter developmenttimes. Modern geneil-
purposescripting languages— like Tcl/Tk, Perl or Python
— allow the smoothintegration of varioussoftwae compo-
nents,while at the sametime providing rich programming
capabilities. Increasesin processorspeedand the devel-
opmentof industry-widestandads are remawing obstacles
to the proliferation of universal scripting languagesin GIS
applications.

This paper examinesthe feasibility, architectue and
early results of the building of a framevork of object-
orientedmodulesfor Perl that is designedo provide uni-
form accessto various sources of spatial data from Perl
scripts. The framevork is independenbf any particular
GlSapplicationandthusbasedntheobjectmodeldetailed
in the Abstiact Specificatiorby TheOpenGISConsortium.
Theframeawvork s intendedto be usedfor rapid application
developmentgluing varioussoftwae componentsogether
and prototyping

1. Introduction

Scripting languageshave long sincebecomecommon-
placein programmingpractice. Today mostcommercial
software packagedeaturesomekind of scripting capabil-
ity andseveral general-purposscriptinglanguages- such
asPerl,Python,Tcl/Tk andVisual Basic— areavailablefor
variousplatforms. Scriptinglanguagesre usually viewed
as complementaryto systemprogramminglanguagedike
C,C++orJaa.

Accordingto [9] scriptingandsystemprogrammingdan-
guagesare fundamentallydifferent. The main role of
systemprogramminglanguagess building datastructures
from scratchanddefiningoperationsvith themonthelevel
of memorywords. The objective of scriptinglanguagess
intrinsically differentand they are more intendedfor con-
nectingvariouscomponentgogether assuminghatexten-
sive framaworks of such componentsalreadyexist. The
transitiontowardsscriptinglanguagesanbeviewedasakin
to the transitionfrom assemblylanguagedo systempro-
gramminglanguageswhich startedin the late 1950s. In-
deed,scriptinglanguagedliffer from systemprogramming
languagewvith respecto the samecharacteristicginstruc-
tions per statementaindtyping of variables)assystempro-
gramminglanguagediffer from assemblylanguages.In
termsof the numberof machine-codénstructionsper lan-
guagestatementscriptingrepresents higherlevel of pro-
grammingby bringing the numberof instructionsto the
100-1000rangecomparedo systemprogrammingwhich,
in turn, hadincreasedhe numberof instructionsper state-
mentto 10 comparedo assemblylanguages.In termsof
typing, scriptinglanguage$iave muchwealer typing than
systemprogramminglanguagesthus facilitating the glu-
ing of varioussoftwarecomponentsin this sensehey are
closerto assemblyanguageswhich alsohave weaktyping
[9].

Oneof the major factorsbehindthe obsened prolifera-
tion of scriptinglanguagess their ability to both increase
the speedandreducethe costsof applicationdevelopment.
Both advantagesomeat the expenseof applicationspeed,
however this is well compensatetbr by fasterprocessors.
In additionto the vastgluing capabilitiescharacteristiof
them, scriptinglanguagesllow the creationof hybrid ap-
plicationswherecomputationallyntensive elementareim-



plementedn suchlanguagesuchasC or C++ andthere-
maininginfrastructures scripted.

This article suggestsa new approachto how scripting
may be usedin GIS applicationsanddescribesa program-
ming framework developedby the authorsto illustratethis
approach. This introductory sectionis followed by sec-
tion 2, which depictsthe authors’perceptionof the prob-
lemsinvolved in building a generalizedGlS interfacefor
a general-purposscripting language. Section3 presents
theproposedsolution,ashortoverview of theexistingtech-
nologiesand populargeneral-purposscripting languages
andexplainswhy certaindesigndecisionsveremade.Sec-
tion 4 expandson the framework architectureand im-
portantimplementationand developmentprocessdetails.
Characteristicand limitations of the resultingsystemand
prospectgor futuredevelopmentarediscussedh sections,
followedby conclusionsn section6.

2. Problems

All major GIS software packageshave long provided
somekind of ascripting(or macro)languageandthoselan-
guagesrewidely usedby GIS developergor bothin-house
and deliverable applications. For example, ARC/INFO
AML was usedto develop an extensie suite of user
friendly add-ondfor the main systemcalled ArcTools. Ar-
cView Avenueis thefoundationfor avastarrayof ArcView
extensionsdevelopedby independentompaniesandindi-
viduals. MapBasicfulfills a similar role for Mapinfo. A
freesoftwarepackagesRASSusesadifferentapproachre-
lying on integrationwith externalscriptinglanguagesuch
asUNIX shellscriptsandTcl/Tk.

Despite being vital in mary situations, application-
specificmacrolanguagesusually lack featuresthat would
allow simple and effective integration with other applica-
tionsandcomponentsTypically, tools for integrationwith
external applicationsare limited to the ability to load dy-
namiclibrariesand call their functions,issuea shell com-
mand or accessan external databasesener. Capabilities
for operationswith spatialobjectsare naturally limited by
the data model of a specific application. Rather often,
application-specifiecnacrolanguagesag behindin termsof
syntacticrichnessflexibility andexpressienessompared
to maturelanguages.

On the otherhand,general-purposscriptinglanguages
like Perl or Visual Basic have evolved into sophisticated
framaworks for integrating applicationsand components
from variousapplicationdomains. Interfacing a software
packageor componento a general-purposscriptinglan-
guagebenefitsboth of them:

e software application is augmentedwith a mature
macrolanguage

e capabilitiesof the applicationbecomeavailableto the
programmersn the target scriptinglanguageandthe
applicationmay be viewed asan extensionor module
of thatlanguage

e throughthe scriptinglanguagédt becomegossibleto
interface the software packageto the vastlibrary of
modulesor extensionsof that scriptinglanguageand
viceversa

e thedependengof ascriptingprogrammeion asingle
softwarevendoris alleviated.

Amongthe mostpopularextensiongor scriptinglanguages
are interfacesto databasenanagemensystems(DBMS).
For example,in thecaseof Perl,specificinterfacesor mary
individual databaseseners had beendevelopedindepen-
dently. Now, however, mostof the developercommunity’s
efforts are concentratedn the Perl DBI (Databasende-
pendentinterfacefor Perl), which enablesa standardized
approachowardsaccessingelationaldatain amanneisim-
ilar to thatof JDBC or ODBC. This type of databasénter-
faceusesastandardizedpplicationprogrammersinterface
(API) thatis commonthroughaserieof driversconformant
to it. Driversperformactualaccesdo the databaseseners
andtypically are loadabledynamicallyat run time. APIs
have becomestandardizedo the point where no change
in the calling script is neededto switch one underlying
databasénto anotherthatis performedby loadinganother
setof drivers.

Othercommontypesof extensionareweb-relatedools
suchasHTML or XML generatorsparsers,nterfacesto
HTTP andmail seners. Perlis rightfully calledalanguage
of the World Wide Weh In our opinion,Perlsucces®nthe
WWW canbe attributednot only to its rich text processing
capabilities,but to a greatextentto its ability to easilyin-
tegratedatabasewith webapplicationspwing to theavail-
ability of the above mentionedextensions. A substantial
numberof web applicationsarejust frontendsfor database
senersprogrammedn Perl(or anotherscriptinglanguage).
Typically, suchscriptstranslaterequestdo theweb seners
into databasegueriesandthenreformatthe queryresultinto
HTML documentswhile performinga numberof special
taskslike generatingrasterimageson the fly or userau-
thentication.

Thereare several particularly notabletrendsin the area
of GIS applicationsoftware.Most major GIS softwareven-
dorsaremoving in thedirectionof enterprise-leel GIS soft-
ware infrastructure. This involves shifting from classical
desktopGIS applicationsto a multi-tier modelwherespa-
tial databasesesideon senersand are sharedby a vari-
ety of clients. Major productsin this group are the Spa-
tial DatabaseéEnginefrom ESRI Inc., Oracle Spatialfrom
Oracleand spatialdatahandlingextensionsfor the sener
productsof mary databassenervendors.



Anothertrendis the proliferationof web-basedIS soft-
ware. Thereis a plethoraof commercialand other prod-
ucts available that are very well coveredin the literature
(for example,see[4]). Eventhoughtherearestill very few
web GIS applicationsof practicalapplicability, the amount
of interestshavn andinvestmenbeingmadeby the indus-
try inspiresoptimism. Hopefully with a new generatiorof
web standardssuchas GeographyMarkup Language[8]
andOpenGISWeb Map Sener InterfaceSpecification2],
webGISwill beableto forgeits way into the mainstream.

In light of this, developmenbf a framework for a script-
ing languagesimilar to the Perl DBI or JDBC but geared
towardsthe handling of spatialdatawould be highly de-
sirable. This paperexaminesthe feasibility, architecture
andearly resultsof the building of a framework of object-
orientedmodulesfor Perlthatis designedo provide uni-
form accessto various sourcesof spatial datafrom Perl
scripts.In theremainderof this article saidframework will
be referredto as GISI.pm, which standsfor “Geographic
Information Systemdnterface” and.pm s a file nameex-
tensionthatis usedto designatea Perimodule.

In orderfor sucha framework to achieve a comparably
high level of capabilitiesfor GIS applicationsasthe Perl
DBI or JDBC provide for databaseapplicationsaccesdo
the elementsof spatial data structuresmust be provided.
Thefundamentaproblemfor accesso spatialdatais adata
model. Therearesereralaspectdo this problem.

First, frameaworks like JDBC or the Perl DBI are built
aroundrelationaldatabasethatarealreadyprettywell stan-
dardizedand whosedatamodelis very well studiedand
widely accepted.Thereis no suchcommondatamodelin
GIS, norcanit bebuilt asa productof summingupthedata
modelsusedin variousGIS packages.Seconddueto the
sophisticatiorof spatialdatamodelsthereis no directmap-
ping of their elementsinto scripting languagedatastruc-
turesasin the caseof therelationaldatamodel. For exam-
ple,in the spatialdatamodelwe have to dealwith suchno-
tionsasgeometryor topologythatdo not have counterparts
in standargorogramminganguageconstructsAt the same
time, suchnotionsfrom relationaldatabaseasrows or data
typesmapeasily Third, thesamephenomenén GIS canbe
representedsingabsolutelydifferentdatamodelsdepend-
ing uponthe requirement®or analyticalproceduresought
(e.0. rasterrepresentationandvectormodels).More often
than not theserepresentationsould be mappedinto each
otheronly with significantdataloss.

In orderto addresghe first aspectof the problemwe
have chosenthe OpenGISAbstractSpecification[7, here-
afterreferredto as"the Abstractspecification"]to be used
asacommonspatialdatamodel. This specificationis being
developedfrom the very beginning to be a glue between
datamodelsof as wide a variety of GIS applicationsas
possible,somethingwhich meshesrsery well with the pur-

poseof scriptinglanguagesThespecificatioris recognized
and supportedby the industry and hopefully this will en-

sureits topicality for along time to come. Also mary ven-

dorsare expectedto develop or bring existing productsto

compliancewith the OpenGISspecification. Commonali-
tiesbetweerthe datamodelsof the compliantproductsand

our framework will simplify driver creation. Unlike some
otherattemptgo suggest commonspatialdatamodel,the

OpenGISSpecificationdemonstratefealthyprogressand

continuousupdating.Not the leastreasorfor choosingthe

specificationis its breadth somethingwhich would be un-

realisticfor alimited groupof developerdo achieve.

To addresshesecondaspectwe aredevelopingnotonly
the APl itself but a hierarchyof abstractlasseso represent
thespatialdatamodelin ourframework. It hasbeendecided
not to addresgheissueof representinghe samephenom-
enain several datamodels,at leastat the currentstageof
developmentput to shift it to GISI.pmextensiondnstead.

3. Proposed solution

Several powerful and popularscripting languagesnay
be consideredor the outlineddevelopment.We think that
the following threerequirespecificmention: Perl, Python
and Tcl/Tk. Theseare all free, mature,general-purpose,
have large numbersof extensionsand have beenusedfor
someGIS applications.In a practicalsensescriptinglan-
guagesmay be characterizedy such featuresas simple
syntax,rapiddevelopmentindimplementatiorascompared
with systemprogrammindanguagesgoodGUI capability
cross-platfornportability, extensibility, andtheability to be
usedeitherfor standalon@pplicationor to beembedded.

Scriptinglanguage$ave oftenbeencategorizedashav-
ing particularstrengths but somemay not be widely ap-
plied outsideof theseareas.For example,Visual Basicis
easyto learn, but is restrictedto Windows ervironments.
JavaScripts smoothintegrationwith Web browsersis well
known, but it is more or lesslimited to that ervironment.
Of the more general-purposéanguagesicl is known for
its GUI capabilities Perlfor its string-handlingandPython
for its object-orientation.Most canbe embeddedn appli-
cationsto varying degreesor usedstandaloneandmay be
connectedo otherapplicationsor protocols.

3.1 Tcl/Tk

Tcl (Tool Command_anguage)in combinatiorwith its
graphicaluserinterfacetoolkit (Tk), is probablythe most
popularscriptinglanguage.In additionto its proven GUI
capabilities,Tcl/Tk displaysconsiderablgortability asits
scriptscanrun on Unix, Windows andMacintosh.Further
its versatility canbe attestedo by the diversity of Tcl ap-
plications.



The fact that the Tk toolkit waswritten in Tcl is cited
asproof of Tcl's greaterGUI capabilities. Although both
PythonandPerlhave packageso allow the useof Tk from
their scripts,it will naturallywork betterwith Tcl thanwith
otherscriptinglanguages.Existenceof the Tcl interpreter
asa C library packagearguesgreaterembeddabilitythan
Perl,which wasnotdesignedo beembeddable.

Tcl/Tk hasa history of beingusedfor GIS applications.
As wasmentionedearlier, it wasusedto developeda GUI
for thefree GIS GRASS.

3.2. Python

Python sharesthe samecommonset of featureswith
othergeneral-purposscriptinglanguagesbut differsfrom
mostin its fundamentabbject-orientatiorand becausehe
corelanguagesupportscreationof classesuseof multiple
inheritance definition of methods,operatorsoverloadand
throw andcatchexceptions. Its developmenthasincluded
influencesfrom Modula, Lisp and Smalltalk. Pythons
high-level built-in datastructuresgynamictyping anddy-
namicbinding arefeatureswhich give it considerablgop-
ularity for useasa“glue” language.

Anotherof Pythons characteristicss its systematicity
That Pythons clean,consistenisyntaxmay not be asrich
asthat of otherscriptinglanguagess toutedas one of its
strengthssincemore casualuserswill belesslikely to be
overwhelmedasthey might be with aricher, andtherefore
moreburdensomesyntax. The greatemregularity andlack
of shortcutdo berememberedrealsoillustrative of higher
systematicity Suchcharacteristicequallyresultin a high
degreeof maintainabilityandfacilitate the task of reading
code, an actvity which Pythonemphasize®ver writing.
Thereis aversionof PythoncalledJPythonwhich runson
top of the Javavirtual machinethatis writtenin 100%Pure
Java. Its featuresncludeseamlesscriptingfor Javaandthe
ability to usearbitraryJava classes.

A package called AVPython (http://wwv
geoci ti es. coni brucedodson. rnf avpyt hon.
ht m) has been developed to enable Python language
supportfor ArcView GIS. It consistssimply of a dynamic
link library and an ArcView extension. The developer
rationalizedhis decisionto use Python as due to strong
COM supportand commonalities- syntaxand readability
— betweenPythonand ArcView Avenue,while acknawl-
edgingthatimplementingPerl would have beenalmostas
simple.

3.3. Perl
Sometimegheacrorym Perlis saidto standfor “Pattern

Extractionand ReportingLanguage”and this is how Perl
is mostly usedandperceved by the programmingcommu-

nity. Indeed,superiorityof Perlin termsof text processing
andpatternmatchingresultedn thereimplementatiomf its
patternmatchingcapabilityin the majority of othermain-
streamprogramminganguages Perl canbe characterized
by almostary buzzword trait of a scriptinglanguage:it is
easyto learn,fastto execute,andhasbeeninterfacedto an
uncountableaumberof othersystemsandlibraries.

Object-orientedeaturesof Perlrequirespecialmention
and explanation. Originally Perl was not object-oriented
and the ability to aggreyatedataand methodsin a single
packagehas appearedonly in version5 in 1993. Even
thoughPerlis not aswell-known as Pythonfor its object-
orientedfeaturesijts objectmodelis very powerful andthe
leastrestrictve. Also, it very naturally combineswith a
non-object-orientedtyle of programming.Unlike in most
otherlanguagespbject-orientedeaturesn Perlatlargeare
notapartof the“corelanguage’but ratherbuilt of elements
thatwerealreadypresentn Perlfor the purposef struc-
tural programming.Objectsin Perlarejust referencess-
sociatedwith methodsfrom an arbitrary module. This is
achiezedusingthe Perloperatoibl ess. Methodsaredis-
tinguishedrom genericfunctionsby receving objectrefer
encedn thefirst positionof theargumentlist [11].

Perllacksmary object-orientedhotionssuchasabstract
andstaticclassesprotectecandfinal methodsor variables.
All constructghatarereally requiredin big object-oriented
projectscanbe simply achieved by the developmentteam
following certainconventions. This correspondsery well
to Perlphilosophy For example privatemethodshaveto be
implementedy just not mentioningthemin the documen-
tation.

This kind of looseobjectmodelhasit prosandcons.In
situationswherethespeedf developmenbutweighdssues
of codecleanlinesslack of restrictionsmay conferadwan-
tage. However, biggerandheavily object-orientedsystems
like GISI.pmhaveto be createdvery cautiouslyandstrictly
following the previously agreedcornventions.

In GISI.pmdevelopmentve havebeenusingUML (Uni-
fied Modeling Languagexhartsto limn the systemdesign.
In our opinion UML is as goodfor Perlasfor ary other
object-orientedanguage. However no UML mappingfor
Perlexists,sosomeminoradaptationareneededo beable
to reflectPerl specifics. Laterin this paperwe usefigures
thatadhereto the UML 1.1 specificatior10].

Perlhasa ratherlimited history of usein GIS, although
it is sometimesisedasan interfacelanguagefor packages
like the MapScriptscripting interface for the MapSener
— a “CGl-basedapplicationfor delivering dynamic GIS
andimageprocessingontentvia the World-Wide Web” —
at the University of Minnesota(htt p: // mapser ver.
gi s. umm. edu/ ).



3.4. Why Per|

Our decisionto choosePerl was influencedby several
factors. One of the major factorswasteamexpertisewith
the languageandthe fact that a stashof unconnectedPerl
scriptshad alreadybeendevelopedat our compaty for a
variety of GIS dataprocessindasks.

The secondimportantadwantageof Perlis a plenitude
of readily available languagemodules, which seemsto
be wider than exists for otherlanguages.Thesemodules
sparedus a noticeableamountof time and effort through
not having to implementthosefunctionsthat had already
beencreatedby otherdevelopers. Moreover, sucha wide
variety of moduleswould allow usto interfaceour frame-
work to somethingthat we had not alreadythoughtof. In
addition,the Comprehensie PerlArchive Network (CPAN,
http:// cpan. or g/ ) andthemoduleof the samename
allow automatediownloadandupdateof Perlmodulesin-
stalledonalocalworkstation.Thanksto CPAN we neednot
fearcompleity of theinstallationproceduresf ourmodules
by a userevenif alot of dependenciesponothermodules
arepresent.

We were first attractedby the Perl DBI that provides
standardizedccess$o mary databaseenersandwhichhas
alreadybeenmentionedn this paper Froma development
perspectie we arerelying onthefollowing modules:

e Tie::IxHash— providesimplementatiorof an ordered
hasharray; that is, a datastructurewhoseelements
may be accessedising either hashkeys or array in-
dices

e URI — a genericunified resourcddentifier (URI) that
we areusingto implementdriver specifiers

e A groupof modulesthatimplementsdesignpatterns
asdescribedn [3]; helpsdevelopergo facilitategood
object-orientegorogrammingpracticeswith Perl

e FreezeTha — supportfor Perlserializedobjects.

In termsof potentialapplicationsareasthat our framework
canbeinterfacedto, we have consideredeveralmodules:

e mod_perl- allows the writing of Apacheweb sener
modulesin Perl

e CGI-simplifieswriting cgi scriptsin Perl

e agroupof moduleswhich provide accesgo andoper
ationonrasterimageyImagie::Magicandothers)

e modulesthat facilitate integration into various dis-
tributedcomputerervironments suchasCORBA and
OLE/COM on the Windows platform;in future, these
moduleswould provide arelatively simplepathfor in-
terfacingGISl.pmto otherapplicationsconformingto
theOpenGIlSmplementatiorspecification$s] and[6]

e avastarrayof modulesto readandgenerateXML and
othermarkuplanguages

e userinterfacetoolkits: PerlTk Gtk-Perl X11-Motif,
PerlQt

4. Architecture

GISl.pm is an object-orientedAPI (Application Pro-
grammingInterface) for accessingspatial datafrom Perl
scripts. GISI.pm is intendedto define a set of classes
and corventionsto provide a consistentinterface to ac-
cessspatialdataindependenbf underlyingformat or ac-
cessmethod. GISI.pmis basedon the OpenGISAbstract
specificatiorversion4 [7].

34 Sl. pm scope ————

ArcVi ew SHAPE .shp & . dbf
driver files
Perl as ) )
i | . pm M F/MD =) nifoe mid
script p driver files

t hat >
uses Cl asses, Oracl e Spatial ; Qacle

@ sl . pm Convent i ons driver Spati al
API
ot her ot her
drivers storage

Figure 1. Architecture of a GISl.pm applica-
tion

GISl.pmis aninterfacelayer providing communication
betweenPerl scriptsutilizing the GISI.pmAPI anddrivers
that provide actual accessto the sourcesof spatial data
(Fig. 1). In the applicationarchitecture which usesPerl
asa glue betweenvariouspiecesof the GIS softwareand
librarieswrittenin avarietyof programmindanguagesthe
role of GISI.pmis that of a dataaccesdayer. All effort
hasbeenmadeto keep GISIl.pm thin and limit its scope
andpurposeto dataaccess.An additionalrequiremenfor
GISl.pmis the ability to presere the maximuminforma-
tion that comeswith a dataset.In this regardour ultimate
goalis to provide accesgo all informationcarriedin spatial
datasetggeometryattributes,metadataetc.) asdefinedin
the Abstractspecification.

4.1. Architectureoverview

GISl is implementedasa setof Perl modulescompris-
ing the core GISl.pmand optional drivers. GISl.pmitself
performsthe following actions: loading of the specified
driver(s),dispatchingnethodcallsto the drivers,anderror
checkingandhandling. All otheractionsshouldbe imple-
mentedoutsideof GISI.pm. Thedriversimplementsupport
for agiventype of spatialdatasourcewhich canbeafile in
someformat,a databassener or almostarything else.



! [cabstract» Core Modules !

: |Dat a Model Base Mbdul e :

Feature GISI URI
Col | ection

1

«abstract » «creat es» !

Ot her ... Connect i ons ro-o— -

v
Geonet ry Connection

«factory»
Driver Loader

+connect ()
+di sconnect ()
T

A +query()
AN
i [«actuar» «act ual » Driver
+ [Dat a_Mbdel Connecti ons
i I npl enent ati on of -
the supported Connection
subset of the data
nodel

Figure 2. GISI.pm elements

The basicelementsof the core GISI.pm are the driver
loader featurecollection identifier, an abstractclassthat
representsa connectiorandaframework of abstractlasses
that representhe spatialdatamodel (Fig. 2). Eachdriver
consistof a setof Perlmodulesthatimplementa connec-
tion classandthoseclassesf the spatialdatamodel that
are supportedby the driver. Thereare also several utility
classesn GISl.pm,including classesvhich performfunc-
tions commonfor mary drivers, suchasparsing,andvar-
ious factoriesand iteratorswhich supportthe spatialdata
model.

GISl.pm’s operationis rathersimilar to that of the Perl
DBI. Thedriverloaderis a staticclassthatimplementswo
significantmethods- connect () anddi sconnect ().
connect receves an object or a string that specifiesa
datasourceandreturnsanobjectthatimplementsaconnec-
tion. Optionally, driver-specificparametersnay be speci-
fied. Theconnectiorclasshasmethoddor retrieving or cre-
atingfeaturecollections.Thelatter canbeiteratedthrough
with the help of cursorsor appendedvith new featureob-
jects,if allowed.

4.2. Spatial Object Model

In terms of the object model of spatial data, as was
mentioneckarlier GISl.pmreliesonthe OpenGISAbstract
SpecicationVersion4 [7]. Only a subsetof this object
model, which is describedbelow, hasbeenimplemented
(Fig. 3).

Thebasicunit in the OpenGlSobjectmodelis a featuie
(FT_Feat ure on Fig. 3). A featureis an abstractionof
areal-world phenomenomandmay be associatedvith a lo-
cationrelative to the Earth. Eachfeatureis specifiedby its
attribute setandbelongso somerecognizableype (feature

— FT_FeatureType . AT_AttributeType
-<pane>: type - ‘.
FT_FeatureAttribute
. FT_Feature -type:
l oD -val ue:
0.5 Feat ur eType:
—<t- Geonetry:
- <Property>: val ue
+get ()
+set ()
I *
FT_FeatureCollection
Ceonetry
+next ()
L1— See separate diagram | [+append()
+rewi nd()

Figure 3. Implemented subset of the OpenGIS
object model (simplified)

type,FT_Feat ur eType). Featurdypedefinesalist of at-
tributeswhich distinguishthatfeature.ln suchalist eachat-
tributeis characterizethy anattributenameandanattribute
type (AT_At t ri but eType). Featuresareorganizednto
feature collections (FT_Feat ur eCol | ecti on). Fea-
turesof a single featurecollection have the sametype (in
the original specificatiortypesthatareinherentof the fea-
ture collectionfeaturetype). Oneof the attributescanbe of
aspecialtype “Geometry”that designate$eatureposition-
ing relative to the Earth's surface.

Geometry(Fig. 4) objectsrepresentsetsof pointsin
a particular coordinatesystem. The setsof points are
representedby Di r ect Posi t i on objects.All geometry
objects are inherent of the GM_(bj ect class. Basic
subclassesof GM (bj ect are geometric primitives
(GM Primtive) and aggreyates (GM Aggr egat e).
Primitive geometriesinclude points, curves and sur
faces (designated as GM Poi nt, GM Curve and
GM Sur f ace) that represent0-, 1-, and 2-dimensional
objects respectiely.  The specification also defines
3-dimensional objects (solids), which have not been
implemented. Points (GM Poi nt) contain a sole posi-
tioning objectthat consistsof a singlecoordinatetuple. A
curve (GM _Cur ve) is an orderedset of curve sggments
(GM_Cur veSegrent ) and a surface (GM _Sur f ace) is
an orderedsetof surfacepatcheqGM Sur f acePat ch).
Aggregates (GM _Aggr egat e) are geometry objects
that consistof other geometryobjects. Multiprimiti ves
(GM_Mul ti Primtive) containgeometryobjectsof a
singlesubclas®f theGM Prim ti ve class.

Positioningis representethy the descendantsf the co-
ordinatepoint class(Coor di nat ePoi nt ), whichis atu-
ple of coordinatesn n-dimensionakpaceClassDi r ect -
Posi ti on isintendedo associateoordinatesvith aspa-



GM_MultiPrimitive

JAN

GM_MultiPoint

CoordinatePoint S S_GM—ObJeCt Feat ure
- poi nt vect or : ;i sRE. 0
+di mensi on() +i sSinpnp?/e() < i
+i 5O osed() See separate diagram
+boundary()
+centroid()
+create_iterator()
- — JAY
DirectPosition
|—4l GM_CurveSegment | \-01 GM_SurfacePatch |+
| [reE g0
19 =IGM_Aggregate GM_Primitive | |+endPoi nt ()
+l engt h()
JAN JAN
[ I l 1 *
GM_Point |— GM Curve Le GM_Surface -
é+posi tion() +segr:ent S0 :g?teg?)es()
+ ength() +peri nmeter ()

GM_OrientedCurve

-orientation: $

Figure 4. Implemented subset of geometry model (simplified)

tial referencesystem.Specificinterpretationof the dimen-
sionsis donein thesubclassesf Di r ect Posi ti on.

4.3. Implementation Details

In order to straightlinethe use * statementin cus-

tom scripts and reduceload on the Perl interpretey the
GISI.pmAPI is groupednto severalPerlmodules.In most
casescriptprogrammerfiave to specifyonly asingleuse
d Sl ; statement.Othernon-driver modulesmay needto
be specifiedf a programmeis goingto instantiatehis own
featuresgeometryor positioningobjects.

There are several utility classhierarchiesthat are in-
cludedin GISI.pm. In additionto standardmethods,ac-
cessto theelementof geometryobjectscanbe doneusing
geometryiterators. Thereare two kinds of iterators: one
to iteratethroughprimitive geometriesandanotherto iter-
atedirectly throughpositioninginformation. Geometryob-
jectscanbe createdwith the help of geometryfactories.In
mostcaseghereis no needto createspecialfactoryclasses
in Perlsincepassinga classnameto a function automati-
cally allows parameterizationf objectinstantiation.How-
ever, a specialfactoryclassis neededor geometryobjects
to unify their creationdirectly from positioning informa-

luse Mbdul e; inPerlhasthesamemeaningas#i ncl ude <nod-
ule.h>inC

tion as creationof curves and surfacesinvolvesthe addi-
tional stepof creatingcurve segmentsandsurfacepatches.
Featurecollectioncanbetraversedusingone of the cursor
classesThereareseveraltypesof cursorgroviding various
additionalfeaturedik e cachingfiltering andothers. In all
casesheuseof iterators cursorsandfactorieds apreferred
methodfor accessinghe elementf or creatinga GISI.pm
datastructure. Also thereis a specialhierarchyof classes
thatrepresenattributetypes.

4.4. Drivers

GISl.pm drivers must comply with the definitions as
shavn in Fig. 4. Due to the outstandinggluing capabili-
ties of Perl, driverscanbe written eitherin Perlitself or a
mixture of Perland otherlanguagesuchasC. For exam-
ple, the driver for ArcView SHAPE files that comeswith
GISl.pmis built on top of a freely available library writ-
tenin C (ArcView Shapelibby Frank Warmerdam avail-
able from htt p: // gdal . vel ocet . ca/ proj ect s/
shapel i b/). Typically, writing a driver in C involvesa
two-layer implementationwith one layer interfacing a li-
brary to Perlandthe otherlayer interfacingraw Perl data
structuresnto GISI.pmobjects.

Interfacing Perl to C is easy owing to SWIG. The
interface compiler SWIG (Simplified Wrapper and In-



terface Generator ht t p: / / www. swi g. or g/ ) is com-

monly usedto facilitate the connecting(gluing) of pro-

gramswritten in systemprogramminglanguageslike C,

C++andObjective-C,with scriptinglanguagesparticularly
Perl, Tcl/Tk andPython. SWIG usesthe declarationson-

taining function and method prototypescommonly found

in C/C++headeffiles to generatehe glue code(wrappers)
neededy scriptinglanguagegor accessinghe underlying
C/C++ code. One more advantageof SWIG is indepen-
denceof Perlimplementationtherefore with the next ma-

jor upgradeto Perl, whenthe Perl coreis expectedto be

rewrittenin C++, andafter SWIG is updatedo thatrelease,
only recompilationwill be needed.

Currently (May 2000), the following driversof general
interesthave beenimplemented: ArcView SHAPE, sev-
eral ARC/INFO gener at e commandformats, MapInfo
MIF/MID andCSV (commaseparatedalue)and DBASE
formatsfor takular data.

4.5. Development strategy

From the very beginning GISI.pm was gearedtowards
practicalneedssuchasapplicationprototyping,file format
corversionandrelatedtasks.Becausef this condition,the
developmentteam could not engagein pursuingthe goal
of implementingall desired(andevenessentialfeaturesat
once. The problemis exacerbatedy a certainlevel of in-
terdependenciesf the blocks of the system. To address
this problemwe arefollowing a developmentpath similar
to the “incremental-lwild model” describedn [1, Chapter
19]. Theideaof this approachis to firstly developa system
skeleton, then createstubsinsteadof systemcomponents
andgraduallyreplacethemwith actualworking code— this
way thereis alwayssomethingpperational Owingto Perl’s
weak typing and dynamicnature,creationof stubsis rel-
atively easyand was attemptedin the caseof the feature
identifier module. Thereare several relevant partsof the
Abstractspecificatiorthat have not yet beenimplemented,
or which have only beenimplementedpartially.

As for the Geometrypackage,the currentimplemen-
tation lacks ary topology classes. In the specification
topology is presentedas a parallel hierarchy of [0..3]-
dimensionalobjects. Metadataand spatial referencesys-
temsarenotimplementeckither both of which areof con-
siderablepracticalvalue. Thebiggestmissingelemenis the
coverageln theAbstractspecificatioracoverages defined
asa “2-dimensionalmetaphorfor phenomendound on or
neara portion of the Earth's surface”. Griddedcoverages
are of particularinterestasthey represensuchcommonly
usedcategoriesof spatialdataasdigital elevation models,
imagesandphysicalfields.

Identifiersare only partially implemented.Currently a
featureidentifieris expectedto be a scalarvalueor arefer

ence. Featurecollectionshave driver URIs astheir identi-
fiers. Thereis alsoaweakrequirementor anidentifierto be
uniquewithin the scopeof a featurecollection. Whatto as-
signto thefeatureidentifieris atthediscretionof thedriver.
If a datasourcehasa notion of featureidentifiers,thenits
valueis assignedo the GISI.pmfeatureidentifier. In other
casesnattributevalueor featuresequentiahumbercanbe
usedasa featureidentifier, which shouldbe specifiedupon
driverinitialization.

Similar to Perlitself, our developmentstrateyy features
astrongtestsuit. Elaboratetestingis of specialimportance
for Perl scriptssince, due to the dynamic natureof Perl,
mosterrorsexposethemselesonly duringrun-time. There
is a setof testsfor eachmethodof eachmoduleto ensure
thateachcomponentvorks properly

To ensureproper interactionbetweencomponentsve
areplanningto usereferencedataset@andto checkif they
are properly corvertedto and from variousformats. The
datasetshouldberepresentatie of all typesof information
andall situationssupportedoy GISI.pm. For this purpose
we have developeda relatively simplescript(giscorvert.pl)
thatis atthe sametime a general-purpos6IS formatcon-
verter The intentionof the scriptis to be ableto cornvert
properlyfrom oneformatto anotherwith minimal format-
specificinformationprovided.

5. Results, Limitations, Future Development

At thecurrentstageof developmen{May 2000)we have
aworking systemthathasshown itself usefulin thefollow-
ing situations:

1. Corwversionof rarely usedandunigueformats:it is a
very commonsituationthatdataexistsin someformat
thatis eitheroutdated supportedy noneof the avail-
ablepackage®r supportof thatformatis broken;with
the help of GISI.pmwriting only onehalf of the con-
verterwould beenough.

2. Correctionof improperly formattedfiles: this often
happenseven to commercialcorverterswhen a file
producedy onesoftwarepackagen theformatof an-
otherpackagés notacceptedy thetargetpackage.

3. Corversion of commonly used file formats: even
thoughthere are quite a numberof commercialand
free utilities for this task, the advantagesof having
GISl.pmarethatit is cross-platformfree,fastandca-
pableof handlingnon-standardituations.

4. Explorationof andcollectingstatisticson the datasets
without convertingtheminto ary particularpackage.



5. Custom geometric transformations and projec-
tion corversion without using commercial pack-
ages (with the help of PROJ.4 originally de-
veloped by USGS and currently available from
http://ww. renot esensi ng. org/ proj /).

As was mentionedearlier benefitsof scripting languages
come at the cost of slower applicationspeed. However,
scriptswritten with the help of GISI.pmarenot asslow as
wasoriginally expected. For example,in corvertingcom-
monfile formats,GISI.pmis fasterthansomecommercial
products Profilingresultsshav thatmostof thetimeis usu-
ally spentin parsermethods. Parserimplementationthat
we areusingis far from being effective, so we think that
enhancemeris possible.

Thereare seriousshortcomingsn the existing version
of GISI.pm. First of all, lack of the implementedblocks
suchasmetadatar spatialreferencesystemsupportmen-
tionedearlierdoesnot allow the building of practicallyus-
abledriversfor mary GIS formats. The secondproblemis
insufficienterrorhandlingthatprobablyshouldbe modeled
afterthe Perl DBI. In somecasedack of supportfor con-
currentaccesgo thedatasetmpedeausability.

Thereis no doubtthat GISI.pmis currentlyin its alpha-
versionstage.Transitionto the betastagewill be achieved
whenthefollowing elementsareimplementedin no partic-
ularorder):

. Topologysupport

. Spatialreferencesystems
. Metadata

. Featurddentifiers

. Griddedcoverages

o 0o A W DN PP

. InternationalizatiorandUnicode

The obvious directionfor future developmentis to support
morefile formatsanddatasources.The developmenteam
hasexperiencewith interfacingGISI.pmpredecessots re-
lationaldatabasewith spatialdataextensionslt wouldalso
beinterestingandrelatively easyto developdriversfor non-
spatialvectorformatslik e, for example,SVG [12].

6. Conclusions

Thefirst conclusioris thattheapproactusedin GISI.pm
works andis effective. It is far more effective thanwriting
haphazardcriptsto fulfill thesamecircle of tasks.GISI.pm
has already saved our compaly a noticeableamount of
working hours by encouragingcode reusethus reducing
spendingon GIS relatedprogramming.

Basedon our experiencewe can suggestat leastone
enhancementor the Abstractspecification relatedto the
possibilitythatfeaturecollectionmaybe aredundantlass.
In the currentversion of the specification featurecollec-
tion is a subtypeof featurethatis usedto aggreyateother
features. In the GISI.pm framework a featurecollection
mostcloselycorrespond$o a statemenhandleor resultset.
However, in this caseit shouldnot be a subclas®f feature
eventhoughit may possessomegeometriccharacteristics
suchasaboundingbox. More confusionwill be generated
if the notion of featurecollectionsis appliedto coverages,
especiallygrid coveragefeatures.

Oursuggestioris to usejustordinaryfeaturesn placeof
featurecollections.Traversingof featurecollectionscanbe
performedwith greatefflexibility by definingvariousitera-
tors(cursors)nthelevel of implementatiorspecifications.

We especiallywantto mentionthatthe geometryspeci-
fication hasmaderemarkableprogressandtodayis much
moreflexible andmaturecomparedo simplefeatures.

ConcerningPerlobject-orientedeaturesye would sug-
gestincluding in either the core languageor developing
modulesthe capability to perform a variety of object-
oriented checkssuch as for function arguments, private
variables,final methodsand others. All thesecapabilities
shouldbe optionalandswitchableon demand Thiswill al-
low scriptanddriver programmerso performfewermanual
checksonthecodeto ensurdts object-orienteatleanliness,
while preservinghe ability to write codefastwhenthereis
aneed.

In generalwe think thatscriptingin GIS hasa bright fu-
turefor componentizedglue-orientedapplicationsaandpro-
totyping. Framevorks similar to GISI.pm,if developedfor
avarietyof scriptinglanguages;canbeusedto gluetogether
variousapplicationsandcomponentsdataaccesandstor
agesystemssimulationmodels,computationallyintensve
algorithms,webanduserinterfaceapplications.

References

[1] BROOKS Jr, F. P. TheMythical Man-Month: Essays
on Softwae Engineering Addison-Wéslegy, 1995.

[2] DovLE, A. Web Map ServerInterface Specifica-
tion, 1.0.0 ed. Open GIS Consortium, 35 Main
Street, Suite 5, Wayland, MA 01778 USA, April
2000. http://ww. opengi s. org/techno/
specs/ 00- 028. pdf .

[3] GAMMA, E., HELM, R., JOHNSON, R., AND VLIS-
SIDES, J. Design Patterns: elementsof reusable
object-orientedsoftwae. Addison-Weslegy, 1994.

[4] Limp, F. W. Mapping hits warp speedon the world
wide web! Geoworld12, 9 (Septembef999),32-42.



(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

OPEN GIS CONSORTIUM. OpenGISSimple Fea-
tures SpecificationFor CORBA, 1.0 ed. 35 Main
Street, Suite 5, Wayland, MA 01778 USA, March
1998. http://ww. opengi s. org/ public/
sfrl/sfcorba_rev_1_0. pdf.

OPEN GIS CONSORTIUM. OpenGISSimple Fea-
tures SpecificationFor OLE/COM 1.1 ed. 35 Main
Street, Suite 5, Wayland, MA 01778 USA, May
1999. http://ww. opengi s. org/techno/

specs/ 99- 050. pdf .

OPEN GIS CONSORTIUM. The OpenGIS(tm)Ab-
stract Specification 4 ed. 35 Main Street,Suite 5,
Wayland, MA 01778 USA, March 1999. htt p:
/I www. opengi s. or g/ public/abstract/.

OPEN GIS CONSORTIUM.  Gedayraphy Markup
Lamguage (GML), v1.0 ed. 35 Main Street,
Suite 5, Wayland, MA 01778 USA, April 2000.
http://ww. opengi s. org/techno/

specs/ 00- 029. pdf .

OUSTERHOUT, J. K. Scripting:  Higher
level programming for the 21st century
IEEE Computer 31, 3 (March 1998), 23-30.
http://ww. scriptics. conf peopl e/
john.ousterhout/scripting.htm .

RATIONAL SOFTWARE AND OTHERS. UML Nota-
tion Guide 1.1ed.,Septembel997.ht t p: / / www.
rational .conmfum /.

WALL, L., CHRISTIANSEN, T., AND SCHWARTZ,
R. L. ProgrammingPerl, 2nd ed. O'Reilly & As-
sociates|nc, Septembef 996.

THE WORLD WIDE WEB CONSORTIUM. Scalable
Vector Graphics(SVG)1.0 Specification\W3CWork-
ing Draft. 545 TechnologySquare,Cambridge MA
02139USA, March2000.ht t p: / / ww. w3. or g/
TR SV@E .

10



